Nilai Eigen dan Vektor Eigen
Nilai Eigen () adalah nilai karakteristik dari suatu matriks berukuran n x n, sementara vektor Eigen () adalah vektor kolom bukan nol yang bila dikalikan dengan suatu matriks berukuran n x n akan menghasilkan vektor lain yang memiliki nilai kelipatan dari vektor Eigen itu sendiri.[1][2] Definisi tersebut berlaku untuk matriks dengan elemen bilangan real dan akan mengalami pergeseran ketika elemen berupa bilangan kompleks.[1][3] Untuk setiap nilai Eigen ada pasangan vektor Eigen yang berbeda, namun tidak semua persamaan matriks memiliki nilai Eigen dan vektor Eigen.[1] Nilai Eigen dan vektor Eigen berguna dalam proses kalkulasi matriks, di mana keduanya dapat diterapkan dalam bidang Matematika murni dan Matematika terapan seperti transformasi linear.[4]
Kumpulan pasangan nilai dan vektor Eigen dari suatu matriks berukuran n x n disebut sistem Eigen dari matriks tersebut.[5] Ruang Eigen dari merupakan kumpulan vektor Eigen yang berpasangan dengan yang digabungkan dengan vektor nol.[6] Istilah Eigen seringkali diganti dengan istilah karakteristik, di mana kata ‘’’Eigen’’’ yang berasal dari bahasa Jerman memiliki arti ‘’asli’’ dalam konteks menjadi ciri khas atau karakteristik dari suatu sifat.[7]
Perhatikan gambar di bawah ini:
Jadi, dapat disimpulkan bahwa jika suatu matriks bujur sangkar, dikali dengan sebuah vektor bukan nol, diatur sedimikian rupa sehingga hasilnya sama dengan perkalian sebuah bilangan skalar dengan vektor tak nol itu sendiri, inilah yang dinamakan Nilai Eigen dan Vektor Eigen.
Berikut adalah 2 contoh soal bagaimana menentukan nilai dan vektor Eigen suatu matriks:
2.Penyelesaian:https://id.wikipedia.org/wiki/Nilai_dan_vektor_Eigen
http://istanamatematika.com/soal-dan-pembahasan-nilai-dan-vektor-eigen-suatu-matriks/
Tidak ada komentar:
Posting Komentar